skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Syed_Qamar_Abbas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Chromia (Cr2O3) is a magnetoelectric oxide that permits voltage‐control of the antiferromagnetic (AFM) order, but it suffers technological constraints due to its low Néel Temperature (TN≈307 K) and the need of a symmetry‐breaking applied magnetic field to achieve reversal of the Néel vector. Recently, boron (B) doping of Cr2O3films led to an increaseTN>400 K and allowed the realization of voltage magnetic‐field free controlled Néel vector rotation. Here, the impact of B doping is directly imaged on the formation of AFM domains in Cr2O3thin films and elucidates the mechanism of voltage‐controlled manipulation of the spin structure using nitrogen‐vacancy (NV) scanning probe magnetometry. A stark reduction and thickness dependence of domain size in B‐doped Cr2O3(B:Cr2O3) films is found, explained by the increased germ density, likely associated with the B doping. By reconstructing the surface magnetization from the NV stray‐field maps, a qualitative distinction between the undoped and B‐doped Cr2O3films is found, manifested by the histogram distribution of the AFM ordering, that is, 180°domains for pure films, and 90°domains for B:Cr2O3films. Additionally, NV imaging of voltage‐controlled B‐doped Cr2O3devices corroborates the 90°rotation of the AFM domains observed in magnetotransport measurement. 
    more » « less
  2. Abstract Boron (B) alloying transforms the magnetoelectric antiferromagnet Cr2O3into a multifunctional single‐phase material which enables electric field driven π/2 rotation of the Néel vector. Nonvolatile, voltage‐controlled Néel vector rotation is a much‐desired material property in the context of antiferromagnetic spintronics enabling ultralow power, ultrafast, nonvolatile memory, and logic device applications. Néel vector rotation is detected with the help of heavy metal (Pt) Hall‐bars in proximity of pulsed laser deposited B:Cr2O3films. To facilitate operation of B:Cr2O3‐based devices in CMOS (complementary metal‐oxide semiconductor) environments, the Néel temperature,TN, of the functional film must be tunable to values significantly above room temperature. Cold neutron depth profiling and X‐ray photoemission spectroscopy depth profiling reveal thermally activated B‐accumulation at the B:Cr2O3/ vacuum interface in thin films deposited on Al2O3substrates. The B‐enrichment is attributed to surface segregation. Magnetotransport data confirm B‐accumulation at the interface within a layer of ≈50 nm thick where the device properties reside. HereTNenhances from 334 K prior to annealing, to 477 K after annealing for several hours. Scaling analysis determinesTNas a function of the annealing temperature. Stability of post‐annealing device properties is evident from reproducible Néel vector rotation at 370 K performed over the course of weeks. 
    more » « less